Snappy

Snappy Programmer’s Reference

Release Version 3.0

PLAY

Copyright © 1996-1999 by Play Incorporated.

Snappy is a registered trademark of Play Incorporated.

Visual Basic, Visual C++, ActiveX, OLE, and Windows are either registered
trademarks or trademarks of Microsoft Corporation.

All other trademarks are the property of their respective owners.

Table of Contents

INTRODUCTT ON . oo e e e e e e e 7
ROAD AP . . o 7
GRAPHI C ORIENTATION TO THE SNAPPY APl e 8
SNAPPY DATA PROCESSING STEPS . o v v vt v et v et e e et et et e 9
SNAPPY OLE CONTROL &+ v v vt v et e et e e e e e e e e e e e e e 10
SNAPPY COM I NTERFACE . & v v ot v et v et e e e e e e e e e e e e e e e e 10

SNAPPY OLE CONTROL ...ttt e e 12
CETTING STARTED . o v v it v et e et e e e e e e e e e e e e 12

Li CENSE . . 12
Purpose of the OLE Reference Sections 12
d ass information for CSnappyCtrl 12
OLE CONTROL PROPERTIES . o vttt e e e e et et e e e e 13
AutomaticSnaphbde 1D 8 13
AUt oShow 1D 6 14
AutoSnapTinme 1D 9 e 14
Blue ID 24 14
Brightness ID 18 14
CaneraSource ID 13 14
ColorSource ID 14 14
Contrast 1D 19 14
CropBottom I D 29 15
CropLeft 1D 27 .. . 15
CropRight 1D 28 e e e 15
CropTop 1D 26 15
Del aySnapTinme ID 10 15
Gamma 1D 20 15
Geen D 23 16
I mageAspect Correct 1D 4 16
ImageBitDepth ID 33 16
ImageHei ght 1D 32 e 16
Imageotim zedPal ette ID5 17
ImageWdth ID 31 e e 17
LPTPort 1D 12 e e 17
Negative ID 15 e e 17
NewMid@pt D 7 .. 17
Picture ID 30 e 18
PreviewTineQut 1D 35 i 18
PreviewType 1D 53 18
ProcessFilter ID 54 i 18
Red 1D 22 19
Saturation ID 17 19
SaveFil eConpression ID 2 19
SaveFileName ID 1 e 19
SaveFil eType 1D 3 e e 19
Sharpness 1D 21 20
SnaphMbde D 11 e 20
Termination 1D 25 20
Tint ID 16 21
UnprocessedSnappyData ID 36 21
VideoFormat 1D 34 21
OLE CONTROL VETHODS &« & vt vttt e e et e et e et e e e e e 21
Abort 1D 40 22
About Box I D DI SPID ABOUTBOXot 21
CanProcess 1D 46 22
CopyTod ipboard 1D 47 22

FreelnprocessedSnappyData ID 56 22

Get MaxCropHei ght 1D 49 22
Get MaxCropWdth 1D 48 22
PrepareToSnap 1D 39 23
Preview ID 38 23
Process 1D 52 23
ProcessLine 1D 45 23
SavePicture 1D 42 23
SaveSettingsAsDefault ID 43 24
ShowPi ctureAndVéait 1D 50 i 24
Showll 1D 41 ... 24
Snap 1D 37 . .. 24
SnapOnly 1D 55 24
UseDefaul tSettings ID 44 25
VerifyPicSaved ID 51 25
OLE CONTROL EVENTS . . ottt e e et e e e e e e e e e 25
BatterylLowChanged 1D 7 25
DataAvailable ID 14 i 25
Error DISPID ERROREVENT e 26
FieldSnapped ID 1 @i 26
PictureAvailable ID 2 i 26
PictureNaneChanged ID 12 26
Power Changed 1D 5 e 26
PreviewAvailable ID 3 i 27
PreviewTimeout 1D 15 i 27
ReadyToSnap 1D 4 e 27
Request oseU 1D 13 e 27
U G ose ID 11 e 28
U Qpened 1D 10 28
VideoAvail Changed ID 9 28
VideoHot Changed ID 8 28
VideoThruChanged 1D 6 28
SNAPPY COM I NTERFACE e e 29
GETTING STARTED . . o o v vt e et e e e e e e e e e e e e e e e e e e e 29
Using the MDL Conpiler i iiiiininn. 29
What Are All These Files For? 29
dlildata. C ..o 29
SNAPPY. h . e e 30
SNAPPY . C vt e e e 30
SNAPPY _Pr € vt e e e e e e e e 30

I NTERFACE | SNAPPY . . . o e e e e e e e 30
Data Members 30
I Snappy: : ESnaphMbde 30
Function Members 31
Snappy Settings . ..o e e 31
BBl vt 31
€ 31
SNAPPI NG o« v v e e e e e e 31

I Snappy: i ADOrt 31
| Snappy: : GetDefaul tSettings 31
I Snappy: : Get Snaphbde 32
I Snappy::1sSourceCamBra 32
I Snappy: :1sSourceCol or i, 32
| Snappy: :1sSourceNegative 32
| Snappy: : SaveCurrent Setti ngsAsDefaul t 33
I Snappy: : SEtAdVIi S€ 33
I Snappy::Setlnput SOUrce 33
| Snappy: : Set Snaphbde 34
| Snappy: : Set SourceCol or 34

| Snappy: : Set Sour c

eNegative 34

1Snappy::8Snap 34
| Snappy: : SnapToUnprocessedData0.... 35
| NTERFACE | SNAPPYADVI SESYNC . . & o v vt e e e e e e e e e e e e e e e e e s 35
Data Members 36
| SnappyAdvi seSync: : ESnappyPhase 36
| SnappyAdvi seSync: : ESnappyVarning 36
Function Members 36
| SnappyAdvi seSync: : nDataReady 37
| SnappyAdvi seSync:: OnDIBReady 37
| SnappyAdvi seSync: : ONError 37
| SnappyAdvi seSync: : OnFi el dSnapped 37
| SnappyAdvi seSync: : OnHot Vi deoChanged 38
| SnappyAdvi seSync: : OnLi neProcessed 38
| SnappyAdvi seSync: : OnLowBatteryChanged 38
| SnappyAdvi seSync: : nPower Changed 38
| SnappyAdvi seSync: : OnPrevi ewl mageReady 39
| SnappyAdvi seSync: : nReadyToSnapciuuio... 39
| SnappyAdvi seSync: : OnStatusUpdate 39
| SnappyAdvi seSync: : OnVi deoAvai | abl eChanged 40
| SnappyAdvi seSync: : OnVi deoThruChanged 40
| SnappyAdvi seSync: : OMVArningcu .. 40
| NTERFACE | SNAPPYHARDWARE . . . o i ot ot it e e e e e e e e e 41
Function Members 41
St i NOS .« v v et i e e e e 41
AdviseSync Interface i e 41
Term nati ON ..o 41
Video Mode ..ot 41
PoOwer MDAE . ..o 41
POt S o o e 41
Snap Preparati On e 41

| SnappyHardware: : Get LPTPOrt, 41
| SnappyHardware: : Get NUMPOrtsS 42
| SnappyHar dwar e: : | sPowerSaverc.c.uiiiinien.. 42
| SnappyHardware: :1sSVideo 42
| SnappyHardware: :lsTerminatedo, 42
| SnappyHar dwar e: : POWEr SAVero, 43
| SnappyHardware: : PrepareToSnapcouuuuiuenien.. 43
| SnappyHardware: : Set Advi S€ 43
| SnappyHardware: : Set LPTPOrt, 43
| SnappyHardware: : SetSVideo 44
| SnappyHardware: : Set Terminationcciuuuio... 44
| NTERFACE | SNAPPYPREVI BV . . . o ot ot it it e e e e e e e e e e e e 44
Function Members 44
I SnappyPrevi ew2: : ADOrt 45
| SnappyPrevi ew2: : Alloc24Bi tPreviewDIB 45
| SnappyPreview2: :AllocPreviewDI B 45
| SnappyPrevi ew2: : FreePreviewDIB 45
I SnappyPrevi ew2: : Set Advi S€ 45
| SnappyPreview2: : SetPreviewDI B, 46
| SnappyPreview2: : StartPreviewingcciuuuio... 46
| SnappyPrevi ew2: : Unl ockPreviewmnmage 46
| NTERFACE | SNAPPYPROCESS . . . o . oottt e e e e e e e e e e e 47
Function Members 47
Notification e e 47
Loading and SaviNg e 47
SNappy Datat e e e e 47
Process Settings e e 47
Process Snappy Data 47

Dl B ot e 47

Speed .. e 48

Image Size and Croppingttt e e 48

I mge Settings (Setting Range -50 to 50) 48
I SnappyProcess: : Abort 48
| SnappyProcess: : AllocProcessDIB 48
I SnappyProcess: : CanProCessS 49
| SnappyProcess: : FreeProcessDIB 49
| SnappyProcess:: GetBlue 49
| SnappyProcess: : GetBrightness, 50
I SnappyProcess: : Get Contrast, 50
| SnappyProcess: : Get Defaul t ProcessSettings 50
I SnappyProcess: : Gt GAMIA i e 50
I SnappyProcess: : Gt G eEN 50
| SnappyProcess: : GetlmageSizec.. .. 51
| SnappyProcess: : Get MaxCropSi Ze 51
I SnappyProcess: : GetRed 51
| SnappyProcess:: GetSaturationcu ... 52
| SnappyProcess: : Get Sharpnessu .. 52
| SnappyProcess: : Get SnappyData 52
| SnappyProcess: : Get SourceQroppingcuuuuiienien.. 52
I SnappyProcess: : GetTint 53
| SnappyProcess: : LoadSnappyDatac0.... 53
| SnappyProcess: : ProcessSnappyData 54
| SnappyProcess: : ProcessSnappyDatalLine 54
| SnappyProcess: : SaveCurrent ProcessSettingsAsDefault 54
| SnappyProcess: : SaveSnappyData 54
| SnappyProcess: : SetAdvi Se 54
| SnappyProcess::SetBlue 55
| SnappyProcess: : SetBrightness 55
I SnappyProcess: : Set Contrast 55
I SnappyProcess: : Set GAMIA i 55
I SnappyProcess: : Set G een 55
| SnappyProcess: : SetlmageSizecu .. 56
| SnappyProcess: : Set ProcessDIB 56
| SnappyProcess: : Set ProcessSpeed 56
I SnappyProcess: :SetRed i, 57
| SnappyProcess:: SetSaturation 57
| SnappyProcess: : Set Sharpnessc. ... 57
| SnappyProcess: : Set SourceQroppingc..ouuiienien.. 57
I SnappyProcess: :SetTint 58
| SnappyProcess: : UseSnappyDatac. .. 58

| ntroduction

The Snappy Programmer’s Referencerovides a programmer with information
required for creating custom applications for Snappy. The Snappy APl provides
two independent and mutually exclusive methods for controlling the Snappy
hardware. The API provided by the embeddable OLE/OCX control is easy to use
and provides all the functionality of the Snappy application itself. There are also
Interfaces within the Snappy DLL which can be accessed directly through COM.
In general, using the COM objects will be more complicated than using the OCX
and some niceties such as the ability to save image files are not available through
the COM interface.

Roadmap

This section contains brief descriptions of OLE and COM, and references to
additional information.

The Snappy Programmer’s Referenceontains the following chapters:

+ Introduction provides some sense of direction for newcomers to the COM
object model by providing links to lots of help, references, and tutorials. The
section Graphic Orientation to the Shappy API shows the relationship between
various components in the Snappy API. The section Shappy Data Processing
Seps shows the different processing phases that occur when using Snappy.

« Snappy OLE Control isthe reference for the OLE control object provided by
Shappy.ocx

« Snappy COM Interfaceis the reference for the COM object interface to
Shappyn.dll or Shappyp.dil, defined by Shappy.idl. (Shappyn.dll isthe NTSC
version while Shappyp.dll isthe PAL version.)

Graphic Orientation to the Snappy API

Figure 1 shows the two Snappy APIs. the Snappy OLE Control, provided through
Shappy.ocx, and the COM interfaces to Snappy’s Dynamic Link Library,
Shappyn.dll or Shappyp.dil (NTSC and PAL versions).

Most applications will use the API provided through the embedded control,
Shappy.ocx, since it provides complete access to file processing, GUI objects, and
low-level Snappy processing DLLs.

Some applications may provide their own file and GUI facilities in place of those
provided by Play Incorporated. These applications may access the COM interfaces
to Snhappyn.dil or Shappyp.dll directly without going througBnappy.ocx, as

indicated by the dashed line in Figure 1.

Graphics
: ‘ | Support
I

Client
Application Qerry-ocs

I ‘
.] - ‘ ’ User
\‘ Interface

Support

-

~
\‘\~\ ISnappy O—(
\\\\\
~—— 3 ISnappyAdvise O—— Snappynd”

ISnappyHardware

o—
ISnappyProcess ()—lL

High-Level API Snappy.ocx Snappy OLE Control

Low-Level API Snappyn.dll or Snappyp.dil | Snappy dynamic link library

Set of objectsfor loading, saving, and
Low-Level Graphics trandating different file and memory

Support Libraries based graphics image formats

User Interface Snappy user interface objects

Figure 1. Hierarchy of Snappy components

Snappy Data Processing Steps

Figure 2 illustrates the
different phases that a

signal progresses)

through from the initial w i — Video In—0O
video input to afinal

picture.

During the first phase, First Phase
thevideo signal is

acquired and analyzed.

The first phase results Acquire and

in unprocessed Snappy Analvze
datawhich isstored in y

memory. This memory
Is accessed with the
| SnappyPr ocess A
memory members: Y

UseShappyData, and - :
—O ppyProcess:UseSnappyData
GetShappyData. The

members: UnproceSSed ——(ISnappyProcess:GetSnappyData

LoadShappyData and Snappy Data ——(ISnappyProcess:LoadSnappyData

SaveS’lappyData ——(ISnappyProcess:SaveSnappyData
provide file storage

capability.

In the second phase,
Snappy datais actually Process

processed to generate Snappy Data
an RGB Device- (Tint, Color,

Independent Bitmap Sharpness, etc.)
(DIB).
l Second Phase

An application
program can take
advantage of the]

separate phases by - RGDE’,I E)rmat Picture Out—»
instantiating different
objectsto handle the
second phase. After
Snappy produces the Figure 2. Snappy Data Processing Blocks
unprocessed data,

indicated by a notification event, some instantiation of a second-phase object can
call GetShappyData to make a copy of the data. Snappy may then immediately

resume capturing unprocessed data. Meanwhile, the second-phase object uses the
copy of the previous data through a call to UseShappyData, and begins processing
with whatever it wants to do. In this manner, multiple second-phase objects can
perform concurrent independent processing, while Snappy continues to create
unprocessed data.

Snappy OLE Controal

The Snappy OLE Control, Shappy.ocx, provides a method to completely control

Snappy and the Snappy application interface through an independent developer’'s
application. The control may be inserted into container applications. It should be
noted that container applications exhibit many different behaviors with respect to
OLE control objects. Controls that work perfectly with one container may fail to
work in another and Snappy is no different.

Note The Snappy hardware must be present on the machine for this to work!

The embeddable control behaves similarly to the Snappy application: please refer
to the Snappy user’s manual for information on using Snappy.

You can also write container applications using Visual Basic or Visual C++ to
control the methods and properties for the embedded control.

Whereto Find Morelnformation

The chapteBnappy OLE Control assumes some familiarity with OLE controls. If
you are new to OLE control programming, please refer to the appropriate
Microsoft documentation as well as the documentation for your programming
environment.

Snappy COM Interface

The Snappy COM interfac&nappy.idl, provides a method to control Snappy
through certain low-level methods. Note that this interface does not make any
provisions for a user interface or file access--these must be provided entirely by
the independent developer’s application.

Whereto Find More Information

The chapteBnappy COM Interface assumes a solid understanding of COM
programming. While not necessarily so, this chapter assumes that the programmer
is using the Visual C++ language and WIN32 SDK environments. If you are new

10

to programming with the Component Object Model (COM), please refer to the
appropriate Microsoft documentation, such as: the OLE Programmer’s
Referenceand the OLE COM Tutorial included in the WIN32 SDK Online

Help. A complete book on the subject is: Brockschmidt, Kraig, Inside Ole,
Second Edition, Microsoft Press, 1995.

11

Shappy
OLE Control

This chapter covers Shappy.ocx, the OLE control for controlling Snappy from
custom applications. (This chapter assumes some familiarity with OLE. Please
refer to the appropriate Microsoft documentation for more information.)

Note If you have arelease of Shappy.ocx dated prior to 11-28-98, please discard it and
use the new version instead!

Getting Started

An easy way to see how the Snappy OLE Control works, isto drop the control
into a container provided by Microsoft Visual C++ or Visual Basic then smply
peruse to see what it does.

License

Before you can use Shappy.ocx, the license file, Shappy.lic must be located in the
same directory. The license is distributed with the Snappy release.

Purpose of the OL E Refer ence Sections

The following sections specify the Shappy.ocx features:
 OLE Control Properties

* OLE Control Methods

* OLE Control Events

OLE Control Properties

Most Snappy properties fall into one of three categories. Acquire, Adjust, and
Save. The Acquire properties set Snappy parameters for acquiring the video
snapshot. The Adjust properties set Snappy parameters for processing Snappy
dataand creating a DIB. The Save properties are settings for saving the processed
image.

The syntax for accessing the properties will vary depending upon the devel opment
environment. Following are examplesfor Visua Basic and Visual C++. If you

12

are using a different environment you will need to use the appropriate conventions
for that environment.

In Visua Basic 5, you simply use the name of the property and the language will
determine if you are getting or setting the property from the context in which you
are using the property name. For example, if you have a Snappy control named
ShappyCtrl embedded in aform, you can use the syntax
ShappyCtrl.AutomaticSnapMode = 0

to set a property value and you can use the syntax

snapmode = SnappyCtrl.AutomaticShapMode

to retrieve a property value.

Visual C++ 5, on the other hand, requires that you use the prefixes Get and Set
with the property name when accessing a property. If you have a member variable
of type CSnappy named m_SnappyCitr| you would use the syntax
m_SnappyCtrl.SetAutomaticShapMode(0);

to set a property value and the syntax

nSnhapMode = m_ShappyCitrl.GetAutomaticShapMode();

to retrieve a property value.

Example programsfiles are avail able for reference purposes. Y ou should also
refer to the appropriate documentation for working with OLE controls within your
development environment.

AutomaticSnapM ode ID 8
short AutomaticSnapM ode;

Indicates the snapping mode used when the Shap() method isinvoked. This
correlates directly to the “Snap Type” setting within the Snappy Application.

Valid values are:

0 -- Normal Snapping

1 -- Continuous Snhapping

2 -- Countdown Snapping, with delay determinedlayShapTime

It should be noted that some programming environments will only allow the
“Normal” snap mode to be used. This is determined by how the programming
environment embeds the control within the application. Furthermore, a
programming environment may not be able to set this property to a particular
value at design time but the application being developed may be able to set it to
the same value at run time. If the value is unavailable at run time then an Error
event will be fired when the client tries to set the property to that value.

See Also DelayShapTime

13

AutoShow ID 6

boolean AutoShow;

Set to TRUE to show a picture full screen at the end of processing and wait for a
keyboard input or mouse click--requires user input when TRUE.

AutoSnapTime ID9
short AutoSnapTime;

Not currently implemented.

Blue D 24
short Blue;

Vaue to be used on the next Snappy data process phase. Legal values range from
-50 to 50.

Brightness ID 18
short Brightness,

Vaue to be used on the next Snappy data process phase. Legal values range from
-50 to 50.

CameraSour ce ID 13

boolean CameraSource;

If TRUE, setstime-based input (camera). If FALSE, setstape input.

Color Sour ce ID 14

boolean ColorSource;

If TRUE, setsto color input. If FALSE, sets to black-and-white input.

Contrast ID 19
short Contrast;

14

See Also

Vaue to be used on the next Snappy data process phase. Legal values range from
-50 to 50.

CropBottom ID 29

short CropBottom;

Set the offset, in field coordinates, of the bottom of the source cropping rectangle
from that of the maximum field size. It does not affect the size of the DIB.

CropL eft D 27

short CropLeft;

Set the offset, in field coordinates, of the left side of the source cropping rectangle
from that of the maximum field size.

CropRight ID 28

short CropRight;

Set the offset, in field coordinates, of the right side of the source cropping
rectangle from that of the maximum field size.

CropTop ID 26

short CropTop;

Set the offset, in field coordinates, of the top of the source cropping rectangle
from that of the maximum field size.

DelaySnapTime ID 10

short DelaySnapTime;
Sets the Delay for AutomaticShapMode, in seconds.

AutomaticSnapMode

Gamma ID 20

short Gamma;

15

See Also

Vaue to be used on the next Snappy data process phase. Legal values range from
-50 to 50.

Green ID 23

short Green;

Vaue to be used on the next Snappy data process phase. Legal values range from
-50 to 50.

| mageAspectCorrect ID 4

boolean ImageAspectCorrect;

If TRUE, maintains the 4:3 aspect ratio of the image when changing one of the
ImageWidth or ImageHeight settings by adjusting the opposite control to match
the aspect ratio. This only affects subsequent settings of the ImageWidth and
ImageHeight properties. The current property values will remain unaffected.

I mageBitDepth ID 33

short ImageBitDepth;

The highest bit depth that images will be processed to. The bit depth of the DIBs
created by the Shap() and Process() methods will be the lesser of this value and
the bit depth of the display.

Valid values are;
4 -- 16 colors
8 -- 256 colors

16-- 65K colors (High Color)
24 -- 16 million colors (True Color)

ImageOpti mizedPal ette

| mageHeight ID 32

short ImageHeight;

Theimage height in pixels. If ImageAspectCorrect is TRUE, then setting this
value will cause the ImageWidth property to change also.

16

See Also

See Also

ImageAspectCorrect

I mageOptimizedPalette ID5

boolean ImageOptimizedPal ette;

Optimizes the palette based upon the colorsin the captured video.

| mageWidth ID 31

short ImageWidth;

Theimage width in pixels. If ImageAspectCorrect is TRUE, then setting this
value will cause the ImageHeight property to change also.

ImageAspectCorrect

L PTPort ID 12

short LPTPort;

The current LPT port that Snappy is assigned to (typically 1-3). Setting this
property to zero will cause the default port value stored in the system registry to
be used. The OCX, upon instatiation, will use the value in the registry by default
so typically this value does not need to be set.

Negative ID 15

boolean Negative,

If TRUE, theinput is considered to be a negative and thus the colors are
complemented to create anormal color image. This conversion is done during
Snappy data acquisition and does not effect the process stage.

NewWndOpt ID 7

boolean NewWndOpt;

If TRUE, new windows are opened for each snapped image. This only appliesif
the Snappy user interfaceisvisible.

17

Picture ID 30
IPictureDisp* Picture;

Thisisthe active picture. Getting this value gives you the picture that was last
snapped or processed. Setting this value allows you to select a previously active
image for saving. (If theimage to be saved was the last one snapped or processed
there is no need to set this property.)

PreviewTimeOut ID 35
short PreviewTimeOut;

The preview time out value. Previewing will stop after the specified number of
seconds. A value of zero disables the time out feature. Some programming
environments do not support the preview time out feature so it will always be
disabled in applications created with those environments.

PreviewType ID 53
short Preview Type;

The type of preview image.

Valid values are;
0 -- Black and White Preview
1 -- Color Preview

If the Color Source property is FALSE, the preview will be black and white
regardless of this setting.

ProcessFilter ID 54
short ProcessFilter;

The type of filtering to be used during processing.

Valid values are:

0 -- Fast (lowest quality)

1-- Normal

2 -- Slow (High Definition mode)

18

See Also

Red ID 22

short Red:;

Vaue to be used on the next Snappy data process phase. Legal values range from
-50 to 50.

Satur ation ID 17

short Saturation;

Vaue to be used on the next Snappy data process phase. Legal values range from
-50 to 50.

SaveFileCompression ID 2

short SaveFileCompression;

For file types that support compression, this specifies the amount of compression
desired. Therange will vary with the file format. Not all formats support
compression.

For the version of Snappy addressed by this document, only two file formats
support compression. For JPEG files, this value actually relates to the JPEG
quality factor and thus ranges from 0 to 100 with 100 being highest quality and
thus lowest compression. For TIFF files, avalue of 0 indicates no compression, 1
indicates RLE compression, and 2 indicates JPEG compression. LZW
compression is not supported due to licensing issues.

SaveFileName ID 1

BSTR SaveFileName;

The filename to store the image data under. Thisisthe full path, filename, and
extension. Note that the extension specified as part of this filename has no
bearing on the format used to store thefile.

SaveFileType, PictureNameChanged

SaveFileType ID 3

BSTR SaveFileType;

19

Indicates the file type by file extension.

Currently, the supported types are:

BMP -- Windows Bitmap

IFF -- AmigaInterchange File Format
JPG -- JPEG

PCX -- PC Paintbrush

PNG -- Portable Network Graphic
TGA -- Targa

TIF -- Tagged Image File

Note that this determines only the format used to save the file — it does not
determine the file extension of that file. The file extension is specified as part of
the filename.

Sharpness ID 21

short Sharpness;

Value to be used on the next Snappy data process phase. Legal values range from
-50 to 50.

SnapMode ID 11
short SnapMode;

Sets the current snap mode. This is equivalent of the “Picture Quality” setting
within the Snappy application.

Valid values are:

0 -- Moving
1 -- Still
2 -- High Quality

3 -- Highest Quality

Termination ID 25
short Termination;

Indicates whether Snappy is terminating the video source or if another device such
as a monitor is terminating the source through the Snéigjep Thru connector.

20

See Also

Tint ID 16

short Tint;
Vaue to be used on the next Snappy data process phase. Legal values range from
-50 to 50.

UnprocessedSnappyData ID 36

OLE_HANDLE UnprocessedSnappyData;

The handle to the snapped data that Snappy processes into an image. Snapping
creates this data, processing usesit to create the final image. See Figure 2.

Any call to retrieve this value should be paired with acall to
FreeUnprocessedShappyData() when the client no longer needs the data. Failure
to do so will result in amemory leak. Multiple instances of Snappy Data may be
kept by the client and selected as the current data by setting this property.

If datais successfully acquired (the return valueis not NULL) then the client may
invoke the Process() method after setting this property to the data previously
obtained.

FreeUnprocessedShappyData(), Process(), Shap(), ShapOnly()

VideoFor mat ID 34

BSTR VideoFormat;

0 NTSC, requires Shappyn.dll
1 PAL, requires Shappyp.dll

OLE Control Methods

This section covers the dispatch interface for the Snappy OLE Contral.

Abort ID 40

boolean Abort();

AbortsaPreview(), Shap(), or ShapOnly() that isin progress.

21

See Also

AboutBox ID DISPID_ABOUTBOX

boolean AboutBox();

Invoking this function displays Snappy’s About box.

CanProcess ID 46

boolean CanProcess();

Indicates if theProcess() method can process the current unprocessed data using
the current process settings.

CopyToClipboard ID 47

boolean CopyToClipboard();

Copies the current processed image bitmap to the Windows Clipboard.

FreeUnprocessedSnappyData D 56

boolean FreeUnprocessedSnappyData(OLE_HANDLE hSnappyData);

Frees the Snappy Data created by retrievindJtigr ocessedShappyData

property. All calls that retrieve the property value should be paired with a call to
this method or a memory leak will result.

UnprocessedShappyData

GetM axCropHeight 1D 49

short GetMaxCropHeight();

Returns the maximum useable video field height.

GetMaxCropWidth ID 48

short GetMaxCropWidth();

Returns the maximum useable video field width.

22

See Also

Prepar el oSnap ID 39

boolean PrepareToSnap();

Turn Snappy on so that next Shap() or ShapOnly() occurs as quickly as possible.

Preview ID 38

boolean Preview();

Start the preview process. The preview will be of the type specified by the
PreviewType property. Each time apreview image is ready, the PreviewAvailable
event will befired.

Process ID 52

boolean Process();

Process the current snap data using the current process settings to create a DIB.
Thisisinvoked after the ShapOnly() method has resulted in the DataAvailable
event being fired. After processing is complete, the PictureAvailable event is
fired.

The Process() method can be called multiple times with the same snap data but
different process settings and each will result in itsown DIB. Thus by using the
ShapOnly() and Process() methods you could alow the user to adjust process
properties such as Contrast and reprocess a snap without resnapping.

Shap(), ShapOnly()

ProcessLine ID 45

boolean ProcessLine(short nLine, long* pBits);

Process one line of snap data. Clients using this OLE control will usually not
invoke this method and will instead invoke either the Shap() method which
automatically does processing or the ShapOnly() and Process() methods.

SavePicture ID 42

boolean SavePicture();

23

See Also

Saves the current picture according to the settings previously made with the Save
properties.

SaveSettingsAsDefault ID 43

boolean SaveSettingsAsDefault();

Sets the current settings such as snap mode, input source, and source type as the
default in the system registry.

ShowPictureAndWait ID 50

boolean ShowPictureAndWait();

Takes the current Snappy picture, displaysit full screen, then waits for amouse
click or keypressto continue. If no pictureisavailable then FALSE is returned.

ShowUlI ID 41

boolean ShowUI(boolean bShow);

Opens or Closes the Snappy user interface as determined by the parameter bShow.

Shnap ID 37

boolean Snap();

Snap a picture using the current snap mode then automatically processit with the
current process settings and create a DIB. When the processed image is ready, the
PictureAvailable event isfired. Thisdoes NOT allow direct reprocessing of snaps
using the Process() method. If the image needs to be adjusted, the Shap() method
can be invoked again after the appropriate settings have been changed -or- the
client may retreive the UnprocessedShapData property, set it back, alter the
desired process settings, then invoke the Process() method.

UnprocessedShapData, ShapOnly(), Process()

SnapOnly ID 55

boolean SnapOnly();

24

See Also

Snap a picture using the current snap mode but do not process the data. When the
snap is complete and the snap data is ready the DataAvailable event isfired. To
get aDIB that can be used, the Process() method must be invoked. Using the
ShapOnly() method results in snap data that can be processed over and over
without resnapping. The client need not worry about the UnprocessedShapData
property as the data is managed within the OCX when this method isused. This
method may only be invoked if the Ul is not currently being shown.

Shap(), Process()

UseDefaultSettings ID 44

boolean UseDefaultSettings();

Get the default property values such as snap mode, input source, and source type
from the system registry.

VerifyPicSaved ID 51

boolean VerifyPicSaved();

This function checksto seeif all snapped pictures up to this point have been
saved. A good place to call thisis when handling the RequestCloseUl event.

OLE Control Events

This section covers the event dispatch interface for Snappy OLE Control. These
are eventsthat are fired upon the conditions specified. Y our application can have
routines that handle each of these events as required and/or desired.

BatteryL owChanged ID 7

void BatterLowChange(boolean bLow);

The state of Snappy’s voltage has changds.dv is TRUE, the battery is low.

DataAvailable ID 14

void DataAvailable();

25

The snap datais available. Thiseventisfired only after the ShapOnly() method is
invoked. It indicates that the snap has taken place and the data is ready to be
processed into an image using the Process() method.

Error ID DISPID_ERROREVENT

void Error(short Number, BSTR* Description, long Scode, BSTR Source,
BSTR HelpFile, long HelpContext, boolean* Cancel Display);

Standard OLE Error notification called when the Snappy control has an error.

Following isalist of the most likely error codes you will see:

57 — Snappy was busy.

68 — Snappy not found (or LPT port not available).

604 — Settings changed while snapping.

607 — Timer Failure. The OCX experienced problems with a timer event.
(Does your programming environment allow Snappy to use timers?)

608 — File save failed.

FieldSnapped ID 1

void FieldSnapped();
One video field was just snapped.

PictureAvailable ID 2

void PictureAvailable();

A processed picture (DIB) is available. Your application needs to examine the
Picture property to retrieve the image.

PictureNameChanged ID 12
void PictureNameChanged(BSTR PicName);

The control’'sSaveFileName property changed. BaveFileName was the default
filename,SaveFilename is modified every time the picture is snapped.

Power Changed ID5

void PowerChanged(boolean bOn);

26

See Also

The Snappy power state changed. If bOn is TRUE, the power is now on. If
FALSE, the power is off.

PreviewAvailable ID 3

void PreviewAvailable();

A preview image is available for display. Y our application needs to examine the
Picture property to retrieve the preview image. Note that a color preview DIB
does not have sguare pixels like most people assume. |If you render it assuming
square pixels, the image will look very squished. Y ou need to render it into a
rectangle with a 4:3 aspect ratio. B&W preview does have square pixels.

PreviewTimeout ID 15

void PreviewTimeout();

The Snappy was previewing and the time period defined by the PreviewTimeOut
property has passed. This event indicates that the Snappy is no longer previewing
and thus no more PreviewAvailable events will be fired until the Preview()
method is invoked again.

Some programming environments do not allow the preview time-out feature to
function. Applications developed in such environments will never receive this
event as the feature is effectively disabled.

ReadyToSnap ID 4

void ReadyToSnap();

The Snappy hardware is powered up and ready to capture video.

RequestCloseUl ID 13
void ReguestCloseUl (boolean* Cancel);

When the Snappy user interface is shown and the user requests the Ul be closed
(by clicking on the close window button for example), this event is sent so that a
confirmation box may be presented. Set Cancel to FALSE to allow the close.

VerifyPicSaved

27

UlClose ID 11
void UIClosg();

This event indicates that the Snappy user interface successfully changed from the
open state to the closed state.

Ul Opened ID 10
void UlOpened();

This event indicates that the Snappy user interface successfully changed from the
closed state to the open state.

VideoAvailChanged ID9
void VideoAvail Changed(boolean bAvail);

The state of the input video has changed. If bAvail is FALSE, video is not
available.

VideoHotChanged ID 8
void VideoHotChanged(boolean bHot);

The state of Snappy’s video signal legality has changé#idfis TRUE, the
video is hot.

VideoThruChanged ID 6
void VideoThruChanged(boolean bUsingThru);

The termination changed. bfJsingThru is TRUE the Snappy is terminating (not
Video Thru — no monitor is attached). FALSE indicates Snappy is not terminating
(Video Thru — a monitor is attached).

28

Snappy
COM Interface

This chapter covers the set of COM interfaces for accessing snappyn.dll. These
interface are:

» |Snappy for loading and saving defaults, and for snapping data.

* ISnappyAdviseSync for obtaining notification about processing status.

* |SnappyHardwar e for obtaining hardware status.

* |SnappyPreview?2 for previewing a snap before actually snapping.

» | SnappyProcess for processing the snapped data.

(The information in this chapter assumes a solid understanding of the Component
Object Model, or COM. Please see the references noted in the chapter
Introduction, section Roadmap for more information.)

Getting Started

Using the MIDL Compiler

Theidl file (for interface definition language), snappy.idl, isto be passed through
the midl command-line compiler. Midl will analyze the snappy.idl file and
produce files named dlldata.c, snappy.h, snappy_i.c, and snappy_p.c.

What Are All These Files For?

Thefile snappy.idl of course, is the definition of the interface that you input into
midl. The midl outputs are:

» dlldatac

* snappy.h

* sSnappy_i.c

* Shappy_p.c

diidata.c
You may delete this file. It isn’t necessary.

29

Snappy.h
The interface header file, snappy.h, contains type definitions and function

declarations based on the interface definition in the IDL file. Include snappy.hin
the source file for your client application.

Snappy i.c
The interface UUID file contains the actual definitions of the IIDs and CLSIDs,

which your client uses for interface identification. When you build your client,
make and link snappy _i.c as part of the project.

Shappy p.c
This would be the source for the RPC proxy/stub dil for passing interface function

arguments and return values across process/machine boundaries (marshaling), if
we were remoting Snappy. But we’re natappyn.dll is strictly to be used as an
in-process server on a local machine, so you can throw snapgy p.c.

| nterface | Snappy

Thel Snappy interface provides functionality for:

» Loading and saving default settings for the snap mode, the input source, and
the source type.

* Snapping picture data with or without processing, and aborting snaps.

Data Members

EShapMode Enumeration of mode#4oving, Still, HighQuality, and
HighestQuality.

| Snappy::ESnapMode
typedef enum tagSnapMode
{

Moving, 1 video field

Sill, 1 field, looked at twice to get better color

HighQuality, 2 fields (frame), looked at twice (full color frame)

HighestQuality Special 35ns mode (requires time-based input)
} ESnapMode;

See Also GetShapMode, SetShapMode

30

See Also

Function Members

Snappy Settings

Set

SetAdvise Sets an optional AdviseSync interface to be used to notify
snap progress, when snap is complete, and/or errors.

SaveCurrentSettingsAsDefault

Sets the current ShapMode, InputSource, and SourceType
asthe default in the system registry.
SetShapMode Set the current ShapMode.
SetlnputSource Set the current input source. (camera or tape)
SetSourceColor Set the current input type. (color or black-and-white)
SetSourceNegative Set the current negative input option.

Get

GetDefaultSettings Get the default ShapMode, InputSource, and SourceType
from the system registry.

GetShapMode Get the current ShapMode.

IsSourceCamera Get current camera vs. tape setting.

I sSour ceCol or Get current color vs. black-and-white setting.

IsSourceNegative Get current normal vs. negative setting.

Snapping Functions

Sap Snap a picture now (using current settings). Processit with
the current process settings (set with the | SnappyPr ocess
interface), and create aDIB.

ShapToUnprocessedData
Snap data now (using current settings).
Abort Abort snapping.

| Snappy::Abort

HRESULT Abort();
Abort snapping.

| ShappyAdviseSync: : OnWar ning, | ShappyPreview: : Abort,
| ShappyProcess:: Abort

| Snappy::GetDefaultSettings

HRESULT GetDefaultSettings();

31

See Also

See Also

See Also

See Also

Get the default ShapMode, | nputSource, and SourceType from the system registry.

GetShapMode, SaveCurrentSettingsAsDefault, | sSourceCamera, |sSourceColor,
IsSour ceNegative

| Snappy::GetSnapM ode

HRESULT GetSnapM ode([out] ESnapMode* pSnapMode);
pShapMode Pointer to the ShapMode variable that will be set.
Get the current ShapMode.

EShapMode, SetShapMode, GetDefaultSettings, SaveCurrentSettingsAsDefault

| Shappy::1sSourceCamera

HRESULT IsSourceCamera([out] BOOL* pbCamera);

pbCamera Pointer to variable to be set to TRUE if camerainput, FALSE if
not.

Get current camera vs. tape setting.

GetDefaultSettings, SetlnputSource, 1sSourceColor, 1sSourceNegative

| Snappy::I1sSour ceColor

HRESULT IsSourceColor([out] BOOL* pbColor);

pbColor Pointer to variable that will be set TRUE if color input, FALSE if
B&W.

Get current color vs. B&W setting.

GetDefaultSettings, SetSourceColor, 1sSourceCamera, |sSourceNegative

| Snappy::1sSour ceNegative

HRESULT IsSourceNegative([out] BOOL* pbNegative);

32

See Also

See Also

Note

See Also

See Also

pbNegative Pointer to variable that will be set TRUE if negative input, FALSE
if normal.

Get current normal vs. negative setting.

GetDefaultSettings, SetSourceNegative, |sSourceCamera, 1sSourceColor

| Snappy::SaveCurrentSettingsAsDefault

HRESULT SaveCurrentSettingsAsDefault();

Sets the current ShapMode, InputSource, and SourceType as the default in the
system registry.

GetDefaultSettings, SetAdvise, SetShapMode, SetlnputSource, SetSourceColor,
SetSourceNegative

| Snappy:: SetAdvise

HRESULT SetAdvise([in] 1SnappyAdviseSync* pNotify);
pNotify Pointer to the interface to call for notification.

Sets an optional AdviseSync interface to be used to notify snap progress, when
snap is complete, and/or errors.

pNotify may be NULL; if NULL, callsthat use Advise will not return until they are
complete.

| SnappyAdviseSync, | ShappyHardware:: SetAdvise, | ShappyPreview:: SetAdvise,
| ShappyProcess:: SetAdvise

| Snappy:: Setl nputSour ce

HRESULT SetlnputSource([in] BOOL bCamera);
bCamera If TRUE, sets camera (time-based) input otherwise, sets tape input.
Set the current input source.

GetDefaultSettings, |sSourceCamera, SaveCurrentSettingsAsDefault

33

| Snappy:: SetSnapM ode

HRESULT SetSnapMode([in] ESnapM ode eSnapMode);
eShapMode The ShapMode variable to be used.
Set the current ShapMode

Note If eShapMode is HighestQuality, the InputSourceType is assumed to be a camera
(time-based) input.

See Also EShapMode, GetShapMode, SaveCurrentSettingsAsDefault

| Snappy:: SetSour ceColor

HRESULT SetSourceColor([in] BOOL bCoalor);
bColor If TRUE, setsto color input, otherwise black-and-white inpuit.
Set the current input type.

See Also IsSourceColor, GetDefaultSettings, SaveCurrentSettingsAsDefault

| Snappy:: SetSour ceNegative

HRESULT SetSourceNegative([in] BOOL bNegative);
bNegative If TRUE, sets to negative input, otherwise normal input.
Set the current negative input option.

See Also IsSourceNegative, GetDefaultSettings, SaveCurrentSettingsAsDefault

| Shappy::Snap

HRESULT Snap([in] HGLOBAL hPackedDIB);
hPackedDIB Handle of DIB to snap into. May be NULL.

Snap a picture now (using current settings). Process it with the current process
settings (set with the | SnappyPr ocess interface), and create aDIB. An

| SnappyAdviseSync notification interface must have been previously defined
through SetAdvise in order to be notified when the DIB is ready.

Note - If the Shappy hardware is busy snappiffAPERR_BUSY is returned.
- If anhPackedDIB is provided and it is not adequate (width, height, etc.), then
E_BADARG is returned.
- If hPackedDIB is NULL, a packed DIB is allocated and returned as a parameter
of 1ShappyAdviseSync:: OnDIBReady. It is up to the caller to free the memory.

See Also ShappyAdviseSync::OnDIBReady, SetAdvise, ShapToUnprocessedData, Abort

| Snappy::SnapToUnprocessedData
HRESULT SnapToUnprocessedData();

Snap data now (using current settings).

Note An | SnappyAdviseSync notification interface must have been previously defined
(with SetAdvise) in order to be notified when thénprocessedData is ready.

See Also | ShappyAdviseSync: : OnDataReady, SetAdvise, Shap, Abort,
| ShappyProcess: : GetShappyData

| nterface | ShappyAdviseSync

| SnappyAdviseSync provides a notification interface for various events:
e OnDataReady

* OnDIBReady

e OnError

e OnFieldSnapped

* OnHotVideoChanged

* OnLineProcessed

* OnlLowBatteryChanged

* OnPowerChanged

* OnPreviewlmageReady

* OnReadyToSnap

* OnStatusUpdate

* OnVideoAvailableChanged
e OnVideoThruChanged

* OnWarning

Note Use the appropriatgetAdvise function listed below in order to receive
notification of desired events.

See Also | Shappy: : SetAdvise, | ShappyPreview:: SetAdvise, | ShappyProcess.: SetAdvise

35

See Also

See Also

Data Members

EShappyWarning Enumeration for video warnings.
EShappyPhase Enumeration for the Snappy phases during a snap.

| SnappyAdviseSync::ESnappyPhase

typedef enum tagSnappyPhase

{
SP_Acquiring, Indicates that Snappy is performing video-acquisition.
SP_Analyzing, Indicatesthat Snappy is performing pre-processing analysis.
SP_Processing Indicates that Snappy is processing.

} ESnappyPhase;

Enumeration for the Snappy phases during a snap.

OnSatusUpdate

| SnappyAdviseSync::ESnappyWar ning

typedef enum tagSnappyWarning

{
SW_VideoLevelLow, Video signal is not usable (double terminated?)

SW_NotCamera Camera mode was asked for, but the video is not
time-based.
} ESnappyWarning;

Enumeration for video warnings.

OnWarning

Function Members

OnDIBReady A processed DIB is ready.

OnDataReady Snapped datais ready to be processed.
OnFieldShapped Onefield of video was just snapped.
OnLineProcessed A line of ShappyData has been processed.
OnReadyToShap Snappy is powered up and ready to capture video.
OnPower Changed Snappy turned on or off.

OnVideoThruChanged Snappy termination changed.

OnPreviewl mageReady A preview image is ready to be displayed.
OnLowBatteryChanged The state of Snappy’s voltage has changed.

36

OnHotVideoChanged The state of Snappy’s video signal legality has

changed.
OnVideoAvailableChanged The state of the input video has changed.
OnError An error occurred.
OnSatusUpdate Progress indication.

| SnappyAdviseSync::OnDataReady
HRESULT OnDataReady();

Snapped data is ready to be processed.
Note Usel ShappyProcess: : GetShappyData to retrieve a copy of the data.
See Also | ShappyProcess: : GetShappyData, | ShappyProcess: : ProcessShappyData,

| Shappy: : ShapToUnprocessedData, | ShappyProcess.: SetAdvise,
| Shappy: : SetAdvise

| SnappyAdviseSync::OnDI BReady
HRESULT OnDIBReady([in] HGLOBAL hPackedDIB);

hPackedDIB Handle to a packed DB TMAPINFOHEADER and bits).
A processed DIB is ready.

See Also [Shappy:: Shap, | ShappyProcess: : ProcessShappyData

| SnappyAdviseSync::OnError
HRESULT OnError([in] int nErrorNum, int nCheckPoint);

eErrorNum A number specifying the type of error.
eCheckpoint A number specifying the location at which the error was trapped.

An error occurred.

| SnappyAdviseSync::OnFieldSnapped
HRESULT OnFieldSnapped();

One field of video was just snapped.

37

Note

See Also

See Also

Note

See Also

See Also

| SnappyAdviseSync::OnHotVideoChanged

HRESULT OnHotVideoChanged([in] BOOL bHot);

bHot TRUE if video is hot (signal too high), FALSE if not.
The state of Snappy’s video signal legality has changed.

Hot video areas are displayest in the preview.

| SnappyHardwar e, OnPreviewReady

| SnappyAdviseSync::OnLineProcessed

HRESULT OnLineProcessed([in] WORD nLine, [in] BYTE* pBits);

nLine Current line.
pBits Pointer to line of 24-bit RGB triples.

A line of ShappyData has been processed.

| ShappyProcess:: ProcessShappyDatal ine

| SnappyAdviseSync::OnL owBatteryChanged

HRESULT OnLowBatteryChanged([in] BOOL bLow);
bLow TRUE if Battery is Low, FALSE if not.
The state of Snappy’s voltage has changed.

This is only called when Snappypseviewing.

| SnappyHardwar e, | ShappyPreview

| SnappyAdviseSync::OnPower Changed

HRESULT OnPowerChanged([in] BOOL bPower);
bPower TRUE if power is now on, FALSE if off.
Snappy’s power turned on or off.

| SnappyHardware

38

Note

See Also

See Also

See Also

| SnappyAdviseSync:: OnPreviewl mageReady

HRESULT OnPreviewlmageReady([in] HGLOBAL hPackedDIB,
[in] ISnappyPreview* pPreview);

hPackedDIB Either an 8-bit DIB or a 24-bit packed DIB depending upon the
type of preview. Hot videoareas are displayed red.

pPreview Pointer to an | SnappyPreview interface. Thisallowsacall to
pPreview->UnlockPreviewl mage() when the hPackedDIB is used,
so that the memory may be used for future previews.

A preview image is ready to be displayed. Note that a color preview DIB does not
have sgquare pixels like most people assume. If you render it assuming square
pixels, the image will look very squished. Y ou need to render it into arectangle
with a4:3 aspect ratio. B&W preview does have square pixels.

pPreview->UnlockPreviewl mage() must be called when the hPackedDIB is used
and may be made available for continued previewing, or the Previewing will stop.

| ShappyPreview:: SetAdvise, OnHotVideoChanged

| SnappyAdviseSync::OnReadyToSnhap

HRESULT OnReadyToSnap();
Snappy is powered up and ready to capture video.

| Shappy: : SetAdvise

| SnappyAdviseSync::OnStatusUpdate

HRESULT OnStatusUpdate([in] ESnappyPhase ePhaseNum,
[in] WORD nValue, [in] WORD nTotal);

ePhaseNum Indicates which processing step Snappy is working on.

nValue The current value (use nValue / (nTotal-1) to calculate percent
complete).
nTotal The total number of stepsto complete.

Progress indication.

EShappyPhase

39

| SnappyAdviseSync::OnVideoAvailableChanged

HRESULT OnVideoAvailableChanged([in] BOOL bVideoAvailable);
bVideoAvailable TRUE if video isavailable, FALSE if not.
The state of the input video has changed.

See Also | ShappyHardware

| SnappyAdviseSync::OnVideoT hruChanged

HRESULT OnVideoThruChanged([in] BOOL terminated);

bTerminated TRUE if Terminated (not Video Thru), FALSE if Unterminated
(Video Thru).

Snappy termination.

See Also | SnappyHardware

| SnappyAdviseSync::OnWarning

HRESULT OnWarning([in] ESnappyWarning eWarningNum);

eWarningNum An EShappyWarning number specifying the type of warning (see
note below).

Something unexpected happened.

Note Clients should respond to the call with one of the following HRESULT values:
E_ABORT = abort
S FALSE =retry

S OK or E_NOTIMPL = continue

See Also EShappyWarning

40

I nterface | SnappyHardware

Thisisthe Snappy hardware status interface.

Function Members

Settings

AdviseSync Interface
SetAdvise Sets an AdviseSync interface to notify when the hardware
state changes or, and/or errors.

Termination

IsTerminated Determinesif Snappy is terminating the video source
(i.e. Video Thru not being used).

SetTermination Set whether Video Thru is terminated or not.

Video Mode

IsSVideo Determinesif Snappy is set to SVideo mode.
SetSVideo Set whether SVideo mode is used.

Power Mode

| sSPower Saver Determinesif Snappy is set to Power Saver mode.
Power Saver Set whether Power Saver mode is used.

Ports

GetLPTPort Get the current LPT Port.

SetLPTPort Setsthe LPT Port for Snappy to use.
GetNumPorts Get the number of available parallel ports.

Snap Preparation
PrepareToShap Turn Snappy on so that next snap occurs as fast as possible.

| SnappyHardware::GetL PTPort

HRESULT GetLPTPort([out] WORD* pnPortNum);
pnPortNum The LPT port Snappy is currently assigned to.
Get the current LPT port.

Note If no LPT port has been assigned this call returnsE_??7.

41

See Also

Note

See Also

Note

See Also

See Also

SetLPTPort, GetNumPorts

| SnappyHardwar e:: GetNumPorts

HRESULT GetNumPorts([out] unsigned long* pnNumPorts);
pnNumPorts The number of available parallel ports.

Get the number of available parallel ports.

Alwaysreturns S OK.

GetLPTPort, SetLPTPort

| SnappyHardwar e:: | sPower Saver

HRESULT IsPowerSaver([out] BOOL* pbPowerSaver);
pbPower Saver Pointer to BOOL, set TRUE if Power Saver is set, FALSE if not.
Determinesif Snappy is set to Power Saver mode.

Power Saver mode causes Snappy to turn off after snapping and preview mode to
stop if left aone.

Power Saver

| SnappyHardware::1sSVideo

HRESULT IsSVideo([out] BOOL* pbSVideo);
pbSVideo Pointer to BOOL, set TRUE if Svideo is set, FALSE if not.
Determinesif Snappy is set to SVideo mode.

SetSVideo

| SnappyHardware::IsTerminated

HRESULT IsTerminated([out] BOOL* pbTerminated);

pbTerminated Pointer to BOOL, set TRUE if terminated, FALSE if not.

42

Determinesif Snappy is terminating the video source (i.e. Video Thru not being
used).

See Also SetTermination

| SnappyHar dwar e:: Power Saver
HRESULT PowerSaver([in] BOOL bPowerSaver);

bPowerSaver TRUE if Power Saver isto be set, otherwise FALSE.
Set whether Power Saver mode is used.

See Also | sSPower Saver

| SnappyHardwar e:: Prepar eT oSnap

HRESULT PrepareToSnap();
Turn Snappy on so that next snap occurs as quickly as possible.

See Also | ShappyAdviseSync: : OnReadyToShap

| SnappyHardware:: SetAdvise
HRESULT SetAdvise([in] ISnappyAdviseSync* pNotify);

pNotify Pointer to the interface to call for notification.

Sets an AdviseSync interface to notify when the hardware state changes or, and/or
errors.

See Also | SnappyAdviseSync, | Shappy: : SetAdvise, | ShappyPreview:: SetAdvise,
| ShappyProcess:: SetAdvise

| SnappyHardware:: SetL PTPort

HRESULT SetL PTPort([in] WORD nPortNum);
nPortNum Set the LPT port for Snappy to use.

Setsthe LPT port for Snappy to use.

43

See Also

See Also

See Also

GetLPTPort, GetNumPorts

| SnappyHardware:: SetSVideo

HRESULT SetSVideo([in] BOOL bSVideo);
bSVideo TRUE if SVideo isto be set, otherwise FALSE.
Set whether SVideo mode is used.

IsSvideo

| SnappyHardware::SetTermination

HRESULT SetTermination([in] BOOL bTerminate);
bTerminate TRUE if termination isto be set FALSE otherwise.
Set whether Video Thru is terminated or not.

|sTerminated

| nterface | SnappyPreview2

Thisistheinterface for creating Snappy previews.

Function Members

SetAdvise Sets an AdviseSync interface to notify when animageis
available, and/or errors.

Alloc24BitPreviewDIB Allocates a packed DIB that can be used for color
previewing.

AllocPreviewDIB Allocates a packed DIB that can be used for black and
white previewing.

FreePreviewDIB Frees a packed DIB allocated with Alloc24BitPreviewDIB
or AllocPreviewDIB.

SetPreviewDIB Assignsthe DIB used by preview.

SartPreviewing Begin previewing.

Abort Stops previewing.

UnlockPreviewlmage Allows Preview to continue previewing.

See Also

See Also

See Also

See Also

| SnappyPreview2::Abort

HRESULT Abort();
Stops previewing.

| Shappy: : Abort, | ShappyAdviseSync: : Abort, | ShappyProcess:: Abort

| SnappyPreview?2::Alloc24BitPreviewDI B

HRESULT Alloc24BitPreviewDIB([out] HGLOBAL* phPackedDIB);
phPackedDIB Handle pointer to packed device-independent bitmap.

Allocates a packed DIB that can be used for color previewing. Note that a color
preview DIB does not have square pixels like most people assume. If you render
It assuming square pixels, the image will look very squished. Y ou need to render
It into arectangle with a 4:3 aspect ratio.

AllocPreviewDIB, FreePreviewDIB, SetPreviewDIB

| SnappyPreview?2::AllocPreviewDI B

HRESULT AllocPreviewDIB([out] HGLOBAL* phPackedDIB);
phPackedDIB Handle pointer to packed device-independent bitmap.
Allocates a packed DIB that can be used for black and white previewing.

Alloc24BitPreviewDIB, FreePreviewDIB, SetPreviewDIB

| SnappyPreview?2::FreePreviewDI B

HRESULT FreePreviewDIB([in] HGLOBAL hPackedDIB);
hPackedDIB Handle to packed device-independent bitmap.
Frees a packed DIB allocated with Alloc24BitPreviewDIB or AllocPreviewDIB.

Alloc24BitPreviewDIB, AllocPreviewDIB, SetPreviewDIB

45

See Also

See Also

Note

See Also

Note

| SnappyPreview?2:: SetAdvise

HRESULT SetAdvise([in] ISnappyAdviseSync* pNotify);

pNotify Pointer to the interface to call for notification.
Sets an AdviseSync interface to be used to notify when an image is available,
and/or errors.

| SnappySetAdvise, | ShappyAdviseSync: : OnPreviewl mageReady,
| Shappy: : SetAdvise, | ShappyHardware:: SetAdvise, | ShappyProcess:: SetAdvise

| SnappyPreview?2::SetPreviewDI B

HRESULT SetPreviewDIB([in] HGLOBAL hPackedDIB);

hPackedDIB Handle to packed device-independent bitmap.

Assignsthe DIB used by preview. If the DIB was allocated with
Alloc24BitPreviewDIB the preview will bein color and if it was allocated with

AllocPreviewDIB the preview will be in black and white.

Alloc24BitPreviewDIB, AllocPreviewDIB, FreePreviewDIB

| SnappyPreview?2:: StartPreviewing

HRESULT StartPreviewing();
Begin previewing.

SetAdvise must have been called, so you can be notified when images are
available.

Abort

| SnappyPreview?2::UnlockPreviewl mage

HRESULT UnlockPreviewlmage();
Allows Preview to continue previewing.

Call this from an implementation of OnPreviewl mageReady.

46

| nterface | SnappyProcess

Thisistheinterface for processing Snappy data. An ordinary application would
use | SnappyProcess to load and save captured Snappy data for processing such
as. color, brightness, and contrast.

| SnappyProcess is quite versatile--application programs might use
| SnappyPr ocess functions to examine and/or modify sequences of captured
Images on the fly.

Function Members

Notification
SetAdvise Sets an AdviseSync interface to notify when animageis
available, and/or errors.
L oading and Saving
Snappy Data
GetShappyData Returns a copy of the current unprocessed data to memory.
UseShappyData Loads Snappy data from memory for processing to image.
SaveShappyData Saves the unprocessed Snappy datato afile.
LoadSnhappyData Load unprocessed Snappy data from afile.
Process Settings
SaveCurrentProcessSettingsAsDefault
Sets the current process settings (tint, sharpness, image
Size, etc.) asthe default.
GetDefaultProcessSettings
Get the default process settings (tint, sharpness, image size,
etc.) from the system registry.
Process Snappy Data
ProcessShappyData Process the Snappy data and produce a DIB.
ProcessShappyDatal.ine
Process one line of Snappy data.

Abort Abort processing Snappy data.
CanProcess Checksto seeif Snappy data may be processed with the

current settings.

DIB

AllocProcessDIB Allocates a packed DIB based on the current process width,
height & bit depth (currently only 24-bit depth). This DIB
can be used with SetProcessDIB.

FreeProcessDIB Frees apacked DIB alocated with AllocProcessDIB.

SetProcessDIB Assigns the DIB to process into.

47

Speed

SetProcesspeed Sets speed and quality of process step.

| mage Size and Cropping

GetlmageSze Get the final size of the next image to be processed.

SetimageSze Set the final size of the next image to be processed.

GetSourceCropping Get the rectangle (in field coordinates) of the source video
to be used when processing.

SetSourceCropping Set the rectangle (in field coordinates) of the source video

to use when processing.

Get the usable video field size.

GetMaxCropSze

See Also

| mage Settings (Setting Range -50 to 50)

GetTint Get the tint value to be used on next process.
SetTint Set the tint value to use for next process.
GetRed Get the Red value to be used on next process.
SetRed Set the Red value to use for next process.
GetGreen Get the Green value to be used on next process.
SetGreen Set the Green value to use for next process.
GetBlue Get the Blue value to be used on next process.
SetBlue Set the Blue value to use for next process.

GetSaturation

Gets the amount of saturation (color) to be used on next
process.

SetSaturation Set the Saturation value to use for next process.
GetBrightness Get the amount of brightness to be used on next process.
SetBrightness Set the brightness value to use for next process.
GetContrast Get the amount of contrast to be used on next process.
SetContrast Set the contrast value to use for next process.
GetGamma Get the amount of gamma (picture) to be used on next
process.
SetGamma Set the gamma value to use for next process.
GetSharpness Get the amount of sharpnessto be used on next process.
SetSharpness Set the sharpness value to use for next process.

| SnappyProcess::Abort

HRESULT Abort();

Abort processing Snappy data.

| Shappy: : Abort, | ShappyAdviseSync: : Abort, | ShappyPreview:: Abort

| SnappyProcess:: AllocProcessDI B

HRESULT AllocProcessDIB([out] HGLOBAL* phPackedDIB);

48

See Also

See Also

See Also

See Also

phPackedDIB Handle pointer to packed device-independent bitmap.

Allocates a packed DIB based on the current process width, height & bit depth.
This DIB can be used with SetProcessDIB.

SetProcessDIB, FreeProcessDIB, | ShappyPreview: : AllocPreviewDIB,
| ShappyPreview:: FreePreviewDI B, | ShappyPreview:: SetPreviewDIB

| SnappyPr ocess:: CanProcess

HRESULT CanProcess([out] BOOL* pbProcessAllowed);

pbProcessAllowed Set to TRUE if process can occur. Determinesif Snappy
data can be processed with the current settings.

Hereis an example of a See Also reference that provides descending order of
importance with various scope references, which might occur in the discussion of
the object | SnappyPreview, for the member | ShappyPreview: : SetAdvise:..

| SnappySetAdvise, | ShappyAdviseSync: : OnPreviewl mageReady,
| Shappy: : SetAdvise, | ShappyHardware: : SetAdvise, | ShappyProcess:: SetAdvise

| ShappyProcess. : FreeProcessDI B

HRESULT FreeProcessDIB([in] HGLOBAL hPackedDIB);
hPackedDIB Handle to packed device-independent bitmap.
Frees a packed DIB allocated with AllocProcessDIB.

AllocProcessDIB, SetProcessDIB, | ShappyPreview:: AllocPreviewDIB,
| ShappyPreview:: FreePreviewDI B, 1 ShappyPreview:: SetPreviewDIB

| SnappyProcess.:GetBlue

HRESULT GetBlue([out] long* pnBlue);
pnBlue Pointer to long to use for blue.
Get the blue value to be used on next process.

SatBlue

49

See Also

See Also

See Also

See Also

| SnappyProcess.: GetBrightness

HRESULT GetBrightness([out] long* pnBrightness);
pnBrightness Pointer to long to use for brightness.
Get the amount of brightness to be used on next process.

SetBrightness

| ShappyProcess.: GetContr ast

HRESULT GetContrast([out] long* pnContrast);
pnContrast Pointer to long to use for contrast.
Get the amount of contrast to be used on next process.

SetContrast

| SnappyProcess. : GetDefaultPr ocessSettings

HRESULT GetDefaultProcessSettings();

Get the default process settings (tint, sharpness, image size, etc.) from the system
registry.

SaveCurrentProcessSettingsAsDefault

| ShappyProcess.: GetGamma

HRESULT GetGamma([out] long* pnGamma);
pnGamma Pointer to long to use for gamma.
Get the amount of gamma (picture) to be used on next process.

SetGamma, Snappy User’'s Manual, Picture Adjust

| SnappyProcess:: GetGreen

HRESULT GetGreen([out] long* pnGreen);

50

pnGreen Pointer to long to use for green.
Get the green value to be used on next process.

See Also SetGreen

| SnappyProcess:: Getl mageSize

HRESULT GetlmageSize([out] WORD* pnWidth,
[out] WORD* pnHeight,
[out] WORD* pnBitDepth);

pnWidth Pointer to word to use for pixel width.

pnHeight Pointer to word to use for pixel height.

pnBitDepth Pointer to word to use for pixel depth (i.e. 24 for true color).
Currently only supports 24-bit depth.

Get the final size of the next image to be processed.

See Also SetlmageS ze, GetSour ceCropping, GetMaxCropSze

| SnappyProcess.: GetM axCropSize

HRESULT GetMaxCropSize([out] WORD* pnWidth,
[out] WORD* pnHeight);

pnWidth Pointer to word to use for width.
pnHeight Pointer to word to use for height.

Get the usable video field size.

See Also GetSourceCropping, SetSourceCropping, GetlmageSze

| SnappyProcess.: GetRed

HRESULT GetRed([out] long* pnRed);
pnRed Pointer to long to use for red.

Get the red value to be used on next process.
See Also SetRed

51

See Also

See Also

See Also

| SnappyProcess:: GetSatur ation

HRESULT GetSaturation([out] long* pnSaturation);
pnSaturation Pointer to long to use for saturation.
Gets the amount of saturation (color) to be used on next process.

SetSaturation

| SnappyPr ocess.: GetShar pness

HRESULT GetSharpness([out] long* pnSharpness);
pnSharpness Pointer to long to use for sharpness.
Get the amount of sharpness to be used on next process.

SetSharpness

| SnappyProcess:: GetSnappyData

HRESULT GetSnappyData([in] [out] BY TE** ppData);
ppData Pointer to aBY TE* pointer to be set to point to the data.
Returns a copy of the current unprocessed data.

| ShappyAdviseSync: : OnDataReady, | Shappy: : ShapToUnprocessedData,
UseShappyData, SaveShappyData, LoadShappyData

| SnappyPr ocess:: GetSour ceCr opping

HRESULT GetSourceCropping([out] WORD* pnLeft,
[out] WORD* pnTop,
[out] WORD* pnRight,
[out] WORD* pnBottom);

pnLeft Pointer to word to use for | eft.
pnTop Pointer to word to use for top.
pnRight Pointer to word to use for right.

pnBottom Pointer to word to use for bottom.

52

See Also

See Also

See Also

Note

See Also

Get the offsets from the maximum field size (in field coordinates) of the source
video to be used when processing.

SetSour ceCropping, GetMaxCropSze

| SnappyProcess.:GetTint

HRESULT GetTint([out] long* pnTint);
pnTint Pointer to long to use for tint.
Get the tint value to be used on next process.

SatTint

| SnappyProcess:: L oadSnappyData

HRESULT LoadSnappyData([in] LPCTSTR pFileName);
pFileName Pointer to name of fileto load.
Load unprocessed Snappy data from afile.

UseShappyData, GetShappyData, SavehappyData

| SnappyPr ocess:: Pr ocessSnappyData

HRESULT ProcessSnappyData();

ProcessShappyData immediately returns control to the caller and begins
processing video data. When the process finishes, the caller is notified.

SetAdvise must have been called, so you can be notified when images are
available through | ShappyAdviseSync: : OnDataReady.

| ShappyAdviseSync:: OnLineProcessed will notify after each line is processed.
SetAdvise, | ShappyAdviseSync: : OnDataReady,

| ShappyAdviseSync: : OnLineProcessed, ProcessShappyDatal.ine,
SetProcessYpeed, AllocProcessDIB, FreeProcessDIB, SetProcessDIB

53

Note

See Also

See Also

See Also

See Also

| SnappyProcess. : ProcessSnappyDatal ine

HRESULT ProcessSnappyDataline([in] WORD nLine, [in] BY TE* pBits);

pBits Pointer to line datato befilled out.
nLine The image line to be processed.

Immediately process one line of Snappy data, and then return to the caller.

This routine processes only one line. To process an entire image, use
ProcessShappyData instead.

ProcessShappyData, SetProcessSpeed, AllocProcessDIB, FreeProcessDIB,
SetProcessDIB

| SnappyProcess:: SaveCurrentProcessSettingsAsDefault

HRESULT SaveCurrentProcessSettingsAsDefault();
Sets the current process settings (tint, sharpness, image size, etc.) as the defaullt.

GetDefaultProcessSettings

| ShappyPr ocess:: SaveSnappyData

HRESULT SaveSnappyData([in] LPCTSTR pFileName);
pFileName Pointer to name of fileto create.
Saves the unprocessed Snappy data.

LoadShappyData, GetShappyData, UseShappyData

| SnappyProcess:: SetAdvise

HRESULT SetAdvise([in] 1SnappyAdviseSync* pNotify);
pNotify Pointer to the interface to call for notification.

Sets an AdviseSync interface to be used to notify when an image is available,
and/or errors.

| SnappyAdviseSync, | Shappy:: SetAdvise, | ShappyPreview:: SetAdvise,
| ShappyHardware:: SetAdvise

See Also

See Also

See Also

See Also

| SnappyProcess:: SetBlue

HRESULT SetBlue([in] long nBlue);
nBlue The blue value.
Set the blue value to use for next process.

GetBlue

| SnappyProcess:: SetBrightness

HRESULT SetBrightness([in] long nBrightness);
nBrightness The brightness value.
Set the brightness value to use for next process.

GetBrightness

| SnappyProcess:: SetContrast

HRESULT SetContrast([in] long nContrast);
nContrast The contrast value.
Set the contrast value to use for next process.

GetContrast

| ShappyPr ocess.: SetGamma

HRESULT SetGamma([in] long nGamma);
nGamma The gamma value
Set the gamma value to use for next process.

GetGamma

| SnappyProcess:: SetGreen

HRESULT SetGreen([in] long nGreen);

55

See Also

See Also

See Also

nGreen The green value.
Set the green value to use for next process.

GetGreen

| SnappyProcess: : Setl mageSize

HRESULT SetimageSize([in] WORD nWidth,
[in] WORD nHeight,
[in] WORD nBitDepth);

nWidth Pixel width.

nHeight Pixel height.

nBitDepth Pixel depth (i.e. 24 for true color). Currently only 24-bit depth is
supported.

Set the final size of the next image to be processed.

GetlmageSze

| ShappyPr ocess. : SetProcessDI B

HRESULT SetProcessDIB([in] HGLOBAL hPackedDIB);
hPackedDIB Handle to packed device-independent bitmap.
Assigns the DIB to process into.

AllocProcessDIB, FreeProcessDIB

| SnappyProcess: : SetPr ocessSpeed

HRESULT SetProcessSpeed([in] BOOL bSpeed);

bSpeed This parameter was originally defined as a boolean but it actually
recognizes three values. A value of 1 indicates fast but lower-
quality processing while O indicates normal processing and 2
indicates HiDefinition mode (very slow).

Sets speed and quality of process step. Fast uses asimpler agorithm for higher
speed, however, the image quality is reduced.

56

| SnappyProcess.: SetRed

HRESULT SetRed([in] long nRed);
nRed Thered value.
Set the red value to use for next process.

See Also GetRed

| SnappyProcess:: SetSatur ation

HRESULT SetSaturation([in] long nSaturation);
nSaturation The saturation value.
Set the saturation value to use for next process.

See Also GetSaturation

| SnappyProcess:: SetShar pness

HRESULT SetSharpness([in] long nSharpness);
nSharpness The sharpness value.
Set the sharpness value to use for next process.

See Also GetSharpness

| SnappyPr ocess:: Set Sour ceCr opping

HRESULT SetSourceCropping([in] WORD nLéeft,
[in] WORD nTop,
[in] WORD nRight,
[in] WORD nBottom);

nLeft L eft.
nTop Top.
nRight Right.
nBottom Bottom.

Get the offsets from the maximum field size (in field coordinates) of the source
video to be used when processing.

57

See Also

See Also

See Also

GetSourceCropping, GetMaxCropSze

| SnappyProcess.: SetTint

HRESULT SetTint([in] long nTint);
nTint Thetint value.
Set the tint value to use for next process.

GetTint

| ShappyPr ocess.: UseSnappyData

HRESULT UseSnappyData([in] BY TE * pData);
pData Pointer to dataloaded by this call.
Loads Snappy data for processing to image.

GetShappyData, SaveShappyData, LoadShappyData

58

